Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0

0‘0
<

Q“’QQ

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0

STAT

£

Approved For Release 2007/07/17 : CIA- RDP86BOO689R000300140021 0

482 i » . . IEE%ANSACTIONS ON SOFTWARE ENGINEER!NG“. SE-7, NO. §, SEPTEMBER 198!

[16] B. Liskov, “anmves for distributed computmg,” Distinguished

Lecture Series, Camegle-Mellon Univ., Pittsburgh, PA, 1980.

[17] P. H. Feiler, “IPC system version 1, ” Gandalf Internal Documen-

tation, 1979. o Y

City, Mexico in 1953. He received the B.S. de-
gree in applied mathematics (Actuario) from
the National University of Mexico, Mexico
City, Mexico, and the M.S. degree in computer
science from Carnegie-Mellon University, Pitts-
burgh, PA, in 1976 and 1979, respectively.

Since 1975 ‘he has been a Research Assistant
'in the Department of Computer Science, Insti-
“tute for Applied Mathematics and Systems, Na-
tional University of Mexico, and is currently on
leave at Cameoxe-Mellon University. He has been a graduate student at
Carnegie-Mellon University since September 1976 and is currently fin-
1shmg his Ph.D. His current research interests include software engi-
neering, programming environments, and specifically, syntax-directed
editing. He is presently working with the Gandalf Project in the design
and implementation of a program development environment.

R

An Experlment m Small Scale Apphcatnon Software
SRR Englneerlng R

" BARRY W. BOEHM

Abstract—This paper reports the results of an experiment in applying
large-scale software engineering procedures to small software projects.
Two USC student teams developed a small, interactive application
software product to the same specification, one using Fortran and one
using Pascal. Several hypotheses were tested, and extensive expenmenal
data collected. The major conclusions were as follows.

® Large-project software engineering procedures canbe cost—effecnvely
tailored to small projects.

® The choice of programming language is riot the dommant factor in
small application software product development.

® Programming is not the dommant actlvxty in small software product
development.

o The *“‘deadline effect” holds on small software prOJects, and can be
used to help manage software development.

® Most of the code in'a small apphcatnon software product is devoted
to “housekeepmg

The paper presents the experimental data supportmg these conclu-

sions, and discusses thenr context and unphcatlons ™~

- Index Terms—Progtammmg languages, programming methodology,
software engineering, software management, software project data.

Manuscripf received April 18, 1980; revised December 29, 1980.
The author is with the Systems Engmeen.ng and Integration Division,

- TRW, Redondo Beach, CA 90278.

Raul Medina-Mora (S’81) was born in Mexico .

Mr. Medina-Mora is a student member of the Association for Com-
puting Machinery.) .

Peter H. Feiler was born in Bad Toelz, Federal
Republic of Germany, in 1952. He received the
Vordiplom in mathematics and computer. sci-

;- in1973.

student in computer sciences at Carnegie-Mellon
University, Pittsburgh, PA, and is currently
completing the Ph.D. degree. Since December
1980 he has been employed by Siemens Corpo-
ration with residence at Carnegie-Mellon Uni-

versity. He participated in the Family of Operating Systems project, in -

the design of STAROS, a multiprocessor operating system, and is cur-

rently involved in the design and implementation -of a program deé-. =
Other research'

velopment support environment (Gandalf Project).
interests include personal computing and local networks.
Mr. Feileris a member of the Assocxauon for Computmv Machmery

I. INTRODUCTION

' Background

HE expenment descnbed in thls paper took place as part
of a first-year gradua_te course in software engineering
given at the University of Southern California (USC) in the
Fall of 1978.

ing software costs. Two teams specified and developed inde-
pendent versions of the same product, one team using Fortran
and the other using Pascal.

The main reason for the project was to g;ve the students.

experience in applymg all the disciplines involved in practical
software engineering: project planmng, reqmrements specifi-
cation, design, programming, testing, mamtenance manage-
ment, technical communication, and human engineering of
‘the man-machine interface. The choice of a cost estimation

"model as the product to be developed was based on three main

criteria.

1) Its size appeared appropnate for the one—semester course
schedule.

2) The subject matter was easy for students to understand

0098-5589/81/0900-0482800.75 © 1981 IEEE

3

.

ences from the Techrucal Umvemty in Munich

Since September 1974 he has been a graduate. :

It involved the development of a small (2000
deliverable source instructions) application software product: -
_ an interactive version of the COCOMO [1] model for estimat-

&
¥
=
*
E<g

St i i e arah

Lo it

RN S

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0 v o %

TR T TR

 Approved For Release 2007/07/17 : CIA-RDP86BO0G8IR000300140021-0

6BOEHM: SMALL-SCALE APPL[CATIC.)FTWARE ENGINEERINVG

N

3) The subject matter remforced other material presented
in the course.

The project also served as a useful vehicle for investigating
the phenomenology of small application software development
projects. To date, most sofiware engineering data have been

~ collected and analyzed on large projects [2]-[5] largely be-
.cause the management of larger projects requires more data to
- be collected. To guide the investigation of the similarities

and differences between large-scale and small-scale software

phenomenology, several hypotheses were formulated and tested '

during the project.

1) Large-project software engineering procedures can be
cost-effectively tailored to small projects.

2) The choice of programming language is the dominant
factor in small software product develepment.

3) Programming is the dominant. activity in small software
product development.

4) The “deadline effect” holds on small software pr0]ects
and can be used to help manage software development

5) Most of the code in a small application software product

_ is devoted to “housekeeping.”

6) The COCOMO ‘model prowdes an accurate estimate of
the manhours required for small software product development,

Contents of Paper

Section II of this paper discusses the nature and s1gmﬁcance
of the hypotheses investigated during the project. Section III
describes the project environment and experimental proce-
dures. Section IV describes the project’s progress and results
by phase. Section V presents and discusses the results of
testing each hypothesis. Section VI presents the conclusions
resulting from the experiment.

I1. DiscussioN OF HYPOTHESES INVESTIGATED

- Hypothesis 1: Large-project software engineering procedures
can be cost-effectively tailored to small projects. ‘

A number of software engineering techniques have been’

found to be highly cost-effective on large software projects,

_ such as' early project planning, thorough requirements. and

design specification and validation, early development of user’s

" manuals, use of unit development folders and configuration
management techniques, and independent product testing

{61, [7]. In general, these techniques require a large amount
of documentation and early nonprogramming activity on large
projects. To date, there has been a wide divergence of opinion
as to whether these techniques can be scaled down for small

projects so that their benefits can be realized without over-

burdening the project with paperwork.
Hypotheszs 2: The choice of programming Ianguage is

‘the dominant factor in small application software product

development.
The choice of programming language has a very strong effect
on the decisions made during the programming portions of

software development. On small projects, which devote more

of their activity to programming than do large projects, the

-choice of language might be the dominant factor in determin-

‘) 483
ing the project’s degree of success. On the other hand, the»ré’m
might be other factors such as program specification, manage-
ment planning, or user engineering which have a larger mﬂu-
ence on the project’s outcome.

Hypothesis 3: Programming is the dominant actzwty in-small
software product development.

This hypothesis is somewhat related to the previous one, but
deals more with the relative amount of effort devoted to pro-

gramming during the software development process. Here
“programming” is defined to include those development activ-

- ites devoted to generating, compiling, debugging, and modifying

code (including commentary) but excluding such activities as
design, testing, walkthroughs, and noncommentary ‘documen-
tation. On large projects, programming activities typically
consume about 7-10 percent of the total development effort
[8]. On small projects, the percentage should be higher.

Hypothesis 4: The “deadline. effect’ holds on small software
projects and can be used to help manage software development,

The “deadline effect’ holds that the amount of energy and
effort devoted to an activity is strongly accelerated as one
approaches the deadline for completing the activity. It is
clearly highly correlated with Parkinson’s law: “Work expands
to fill the available volume.”

On a software project with a single-deadline at the comple-
tion of development, there is a high risk that even the accele-
rated effort of the development team will not be enough to
meet the scheduled deadline. At this point, one has only two
choices. .

1) Slip the schedule. C

2) Add more people in an attempt to meet the schedule,
resulting in an even larger schedule slip (by Brooks’ law [9]:
“Adding more people to a late software project makes it even
later .

However, if one can define a series of intermediate deadhnes
or milestones, which comnbute directly to the success of the
overall project, one can use the deadline effect to generate -
enough intermediate effort to keep the project on schedule.

Where does this extra effort come from? - Some of it may
come from people spending extra hours on evenings and week-
ends. However, a good deal of it generally comes from a re-
distribution of the normal slack activities in the software

_engineer’s workday. A Bell Labs time-and-motion study of

70 programmers [10] indicated that about 30 percent of the
workday was spent in slack-type activities (see Fig. 6 for -
details). The existence of a project deadline has the effect of
deferring some of the slack activities until after the deadline.’
Hypothesis 5: Most of the code in a small application soft-
ware product is devoted to “housekeeping.” A
In sizing and cost estimation of large projects at TRW, we

‘have found that there has been a tendency to underestimate the _

amount of code devoted to “housekeeping”: user amenities,
error processing, mode management, moving data around.

_’Managexs should be warned not to try to eliminate this slack by
imposing more and ‘more deadlines. This route generaily. leads to
decreased morale, decreased long-range technical skﬂls and increased
personnel turnover. - .

Approved For Release 2007/07/1~7 : CIA;RD.P86BOOG89ROOO300’I.40021-0 —

ags
The small projects developed in this experiment made it fea-
sible to examine each line of source code and classify it with
respect to its function, and thus to determine the size and
nature of the “housekeeping’ portions of the code.
Hypothesis 6: The COCOMO model provides an accurate

-estimate of the manhours required for small software product'

development. ;

The initial cahbratlon of the COCOMO model was done with
respect to a sample of mostly medium and large software
projects. One of the final assignments for the student teams,

_used as a test of their maintenance activity, was to enter their

own project descriptors into their version of the COCOMO

model, to see how well its estimate correlated with the actual
amount of effort they spent 1n development

III ‘THE EXPERIMENTAL PROJECT
This section describes the experimental software project

undertaken by the two teams in terms of the product to be -

developed, the development environment, the projects’ organi-
zation and staffing, the project schedule, the software engi-

neering techniques used, and the expenmental data collectxon

and analysxs techmques used

The Software Product -

The COnstructive COst MOdel (COCOMO) developed by the
two teams is a partly analytic, partly table-driven model. It
accepts descriptions of software components in terms of their
size and their ratings with respect to 16 cost driver-attributes
(e.g., hardware constraints, database size, required fault-
freedom, personnel experience, use of tools, and modern pro-
gramming practices). It uses these to calculate the amount of
effort (and resulting dollar cost) required to develop each
component and the overall system, and provides a breakdown
of the effort and cost into four major development phases.

The interactive version of the COCOMO model to be devel-
oped was to allow users to interactively specify their software
product descriptions at the terminal, to provide appropriate
error responses and ‘‘help” messages, and to produce the re-
sulting cost estimates either at the terminal, on an off-line
printer, or in a user file for later reference.

The Development Environment

The products were developed on the USC PDP-10 computer,
using the TOPS-10 time-sharing operating system. The
TOPS-10 software support was reasonably good in terms of
text editing, code inventory management, and debugging aids.

The computer system was not very reliable, however; its mean- -

time between failures averaged about 4-6 h during the pro-
gramming and test phases. Further, it became harder and
harder to obtain access to a terminal as usage from other
courses built up during the semester. The Pascal group expe-
rienced some difficulties with the Pascal compiler, also.

‘Organization and Staffing

Twelve students signed up for the course. It was decided to
organize them into two 6-person teams, a Project Manager and
five Assistant Project Managers (APM’s) responsible for:

Approved For Release 2007/07/17 : CIA-RDP86800689R000300140021-0
lEE‘lANSACTIONS ON SOFTWARE ENGINEERING.L. SE-7, NO. S, SEPTEMBER 1981

1) Student.Preference

Approved For Release 2007/07/17 CIA- RDP86BOO689ROOO300140021 0

» developing the cost model subsystem of the product;

o developing the user input/output subsystem;

o developing the user’s file subsystem;. _

o verifying and validating (V +V) plans, spemﬁcatlons and
products;

e performing project planning and control (P + C) functions. .

In addition, the Project Manager was to serve in a chief pro-
grammer capacity, in developing the top-level requirements,

.design, and code for the product. Also, the nonprogramming
team members were required to perform a successful modifica- -

tion of the product after development was complete.
" Table I shows the major responsibilities of each team mem-

ber during the various phases of the project. The acronyms

will be explained in the section below on “Software Engmeer—
ing Techniques Used.” R ,
At the start of the semester, the students were oxven a short

- diagnostic test to determine their familiarity with various -
aspects of software engineering. They were also given a copy
of Table I and asked to rank their preference for the various .

jobs. Team assignments were made with respect to three main
criteria: - :

first or second choice.
' 2) Language Experience: Team P (the Pascal leam) did not
contain any students with no Pascal experience; Team F (the

- Fortran team) did not contain any students with no Fortran .

experience. : S

3} Experimental Balance: For example, Team P members
had an average of 34 months of programming experience;
Team F, 33 months. :

So ftware Engineering T echniques Used

Early Requirements Specification and Valtdatzon. The ﬁrst
phase of the project was devoted to developing requirements
specifications and draft user protocols; independently validat-
ing the requirements; and holding a plans and requirements
review (PRR) to determine how to resolve problems found in
validation.

Early Product Design and Verification: The second phase
was devoted to developing and independently verifying a
product design and a draft user’s manual and holding a product
design review (PDR) to resolve problems identified.

Structured Development Techniques: These included top-
down design and development, program design language, struc-
tured code, program library functions, structured walkthroughs,
and a democratic variant of a chief programmer team.

Unit Development Folders (UDF’s)[11f: These are formal-
ized' programmer’s notebooks with sections for the require-
ments, design, test plans, code, test results, and as-built docu-
mentation. In this project, separate UDF’s were established
for each subsystem. A cover sheet on each UDF is used to
track progress with respect to the development schedule for
the unit.

‘Independent Verification and Vahdanon {¥ +V): One
team member performed independent V +V of the require-

ments, design, and software products developed by the other ’

team members. The code was to be furnished to the APM-V + V
only after it had been demonstrated to. satisfy a set of con-

Each student s]ob was exther hxs"v

1
4
4

- independent testimg,

..k
e o

BOEHM: SMALL-SCALE APPLICATI(’)FTWARE ENGINEERING

Y

L o Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0

" ' 485

TABLE I
PROJECT RESPONSIBILITIES BY PHASE
ocT.18 NOV. 8 : DEC. 1 DEC. 13
. : TEST - ACCEPT.
PRR PDR) BASELINE TEST
@ PROJECT PLAN & MANAGE W.R.T. PLAN & MANAGE W.R.T, PLAN ¢ MANAGE W.R.T. PLAN
© TOP-LEVEL © SYSTEM-LEVEL © PROGRAM TOP-LEVEL | e CLOSE OUT ALL
h’;ﬁ‘gfggn ROTS. SPECS. DESIGN SOFTWARE ACCEPTANCE ITEMS
It !
" | « DRAFTUSER o INTEGRATE SUB- -
PROTOCOLS SYSTEMS - -
o PROJECT PLAN o MONITOR PLANNED « MONITOR UDF’S, o RUN LIBRARY, * MODIFY
] « REPORTING PROGRESS PROGRESS SPR SYSTEM SOFTWARE
BPM- SYSTEM e UDF, LIBRARY: e RUN LIBRARY - o PUBLICATIONS .
L2 1 © PUBLICATIONS PROCEDURES - o SOFTWARE PROBLEM s .
© PUBLICATIONS REPORT (SPR) SO
SYSTEM :
® FILE SUBSYS. ® FILE SUBSYS. & PROGRAM FILE o FIX SPR'S
P RQTS. DESIGN, TEST PLANS, SUBSYSTEMS © AS-BUILT DOC'N. .
WILE e DRAFT USER PORTIONS OF USER e SUPPORT '
PROTOCOLS MANUAL INTEGRATION
© 1/0 SUBSYS. © /O SUBSYS. DESIGN, | PROGRAM I/0 SUBSYS. | e FIX SPR'S
AN RaTs. TEST PLANS, * SUPPORT AS-BUILT DOC'N. - ;
o * DRAFTUSER PORTIONS OF USER INTEGRATION - . .o L
] PROTOCOLS MANUAL . s o
© MODEL SUBSYS. | ® MODEL SUBSYS. ® PROGRAMMODEL _ | ® FIXSPR'S
BPM- RQTS, DESIGN, TEST PLANS, SUBSYS. o AS-BUILT DOC'N.
BODEL PORTIONS OF USER "o SUPPORT
- MANUAL INTEGRATION - _ _
« V+V RQTS. © V+V DESIGN e FUNCTIONAL CAPA- © RUN SYSTEM TESTS * MODIFY
FPM- o PRELIM. © INTEG. + TEST PLANS - BILITY LIST PREP. ® ISSUE SPR'S - SOFTWARE
WiV ACCEPTANCE A ® INTERNAL :
EPT. TEST PLAN .
- YEST PLAN * Acc ACCEPTANCE

ditions derived firom the requirements and design by the
APM-V +V (a fumctional capability list).

" Baseline Configuration Management (CM): After each
review and after tumover of the code to the APM-V + V for
the master version of each item was to be
turned over to tlhhe APM-P + C as the formal baseline version
of the.item. Thereafter, the baselined master version could

. be changed only by the APM-P +C, using the problem report

7.

system to record &Jhe reason for and nature of the change.

-7

Experzmental Data Collection Procedures

Hypotheses about the amount and’ dlstrlbutlon of effort .
‘were’tested by having each team member fill out weekly time -

sheets indicating how many hours in each day were spent in

performing various basic activities: reading, designing, planning, -

programming, documentation, testing, reviewing, meeting,
and fixing. These were collected and analyzed by the APM
Planning and Control.

Hypotheses abowt error rates during the development process-

were tested by cellecting and analyzing the problem report
forms employed as part of the V + V process.
Hypotheses abowt the distribution of the code by function

- were tested by reading each segment of code and categorizing

it by function: model calculations, getting user inputs, furnish-
ing user outputs, «control or mode management, user help-
message processing, error processing, moving data around,
formats and data declarations, and comments.
Hypotheses about the acceptability of the resulting products

" were tested by comxducting an independent acceptance test, in

which two members of the USC Computer Science faculty
were given the prasduct user’s manual a day in advance, and
then spent a 2 h session using the product the following day.

Approved For Release 2007/07/17 - Cl

A log of resulting problems and comments was made by each
team during their session. :
Hypotheses about the relative 1mportance and efﬁcacy of
languages and other software engineering techniques were
_ tested in a nondirected fashion. At the end of the course,
‘each student wrote a ten-page project critique, addressing the
~ question “if we were to do the project over again, how could
we do it better?” The results of these critiques were analyzed
for the degree of consensus among team members and between
" teams .of the most 1mportant factors mﬂuencmg the pro;ect
results e . .

IV PROJECT PROGRESS AND RESULTS BY PHASE)
Plans andRequzrements Phase .. . i s

Both teams produced their requ1rements spemﬁcatlons and
life-cycle master plans on time and in the formats provided.
The small size of the product meant that the spec was about
at the same level of detail usually given in a product design
spec for a large product: variable names assigned, detailed data -
structures provided. Team P had carried their .spec much
further than Team F, which had not developed much detail
in their intrateam interface specs. Team P’s spec contained
24 pages and generated 41 problem reports; Team F’s spec
contained 18 pages and generated 31 problem reports. Both
averaged 1.7 problem reports/page,> which is typical of the
rate for large software systems [12]. T

2The problem reports gave each student an appreciation of the number .
of inconsistencies that must be resolved even in small group-produced .
“specs, and of the value of resolving them early. For example, one
variable (the number of subsystems to be costed by the user) was defined
in six different ways throughout the spec: NSUB, NUSB, NUMSUB, N,
NSUM, and TBD (to be determmed)

A-RDPSBB00689R000300140021-0 —

486
Neither team produced very thorough draft user protocols,
which would turn out to cause a number of problems later.
During this phase, one Team P member dropped the course.
" This problem was handled by the instructor providing Team P
with the cost model requirements spec he was to have pro-
duced, by having the APM-file also design and code the cost
model subsystem, and by somewhat reducing the functional
capability required of Team P’s file subsystem. Fortunately,
this did not seriously unbalance the expenment and no further
-dropouts occurred : : ~

* Product Desrgn Phase »

Both teams produced their product design specrﬁcatlons and
draft user’s manuals on time and in the formats specified.
Both teams required additional time for their draft test plans,

mainly because the V + V persons did not get the product de-

" sign spec early enough. Again, the small size of the product
meant that the spec was at the level of detail usually given in

- a detailed design spec for a large product e.g., detailed PDL‘

~ for each routine. ,
In this phase Team F had to “play catchup” both to refine

their requirements spec ‘and to reflect the additional detail in "

- their design. Largely as a result, their design error rate was
. higher: 71 problem reports in a 58-page spec (1.2 problems/
" page), compared to 48 problem teports in a 68-page spec (0.7
problems/page) for Team P.3
The draft user’s manuals were lacking cons1derably in detail.
Team P’s draft was 9 pages, compared to 28 pages in their
final user’s manual. Team F’s draft was 6 pages, compared to
a final version of 20 pages. This lack of detail was to cause a

number of problems Wthh showed up in the user acceptance .

test.

Two highly critical design problems were detected in the.

design V + V activity. Both teams specified a highly inflexible
lock-step method for the user to furnish inputs to the model
(easy to program via DO, FOR, or WHILE loops, but hard on
the user who wants to go back and revise an earlier input,
and finds he cannot do it until he completes the entire input
sequence). Also, Team F designed a highly inefficient storage/
retrieval scheme which required” frequent disk accesses for
quantities which could have been kept in core. The teams’
response to these problems was not to modify their designs

but to wait and see how they worked out in practice. In the -

time available to complete the project, these decisions turned
out to.be 1rrevocab1e

Programmzng Phase

Progress in this phase was slowed down by the unrel1ab111ty
of the PDP-10 system and the increasing unavailability of
terminals. One structured walkthrough per team was per-
formed in class. Team F’s walkthrough found 12 (genuine,
nontrivial, distinct) problems in a 77-line routine. Team P’s
walkthrough found 13 problems in an 87-line routine.’ Both

3These are “genuine, nontrivial, distinct” problem reports, exctuding
reviewer misunderstandings, trivial typos, and duplicates.
ports were generated both by the APM-V +V and by the instructor,
whose intent was to provide a uniform standard of review thoroughness.

- Approved For Release 2007/07/17 CIA-RDPé6BOOG89ROOO300140021-0' _
' IEaTRANSACTIONs ON SOFTWARE ENG[NEERIN‘OL. SE-7, NO. 5, SEPTEMBER 1981

Problem re-’

of these work out to about one problem detected per 63 lines

of code.

Based on later feedback from the routine originators, only)

three additional problems were found in these two routines

later. This meant that the walkthroughs were 25/28 = 89 per-
These -

cent effective in detecting errors in these routines.
results differ considerably from those reported in a controlled

experiment by Myers [13]: one problem detected in walk-
throughs per 11 lines of code, with a 38 percent effectiveness
in detecting errors. The difference is most likely explained by

the fact that Myers’ sample routine contained a number of
considerably more subtle errors than are found in most appli-
cations software (e.g., 6 of the 15 errors in Myers’ sample had

gone undetected when a version of the program was generated o
' using correctness-proof techniques [14], [15]).4
Neither team used walkthroughs extensively, however, due =
partly to the difficulties of scheduling them with students
* having different on-campus schedules. Also, " the unit devel-
. opment folders were not as effective 2 means of development
_control, due largely to thrs reasom. i w :

Integratzon and Test Phase

-~ Progress in this phase was slowved down even more because

of the PDP-10 system’s lack of reliability and terminal avail-

‘ability. Also, some quirks in the Pascal compiler created some
integration difficulties for Team P. Both teams were only able .~
- to complete integration and test by getting everyone together

for a crash team effort on the weekend before the acceptance
test. '

‘As a result, the test baselme was Iate and only partially
established. This meant that the independent test activity was
incomplete, that only a fraction of the problems thus discov-
ered were fixed, and the problem report/configuration manage-

ment system broke down. One result of this was that accurate-

statistics on the product test activity were not available.

Acceptance Test

Both teams provided the accepmnce test user with a copy of "

the users’ manualin advance, and were ready for the acceptance-
test session on schedule. Both preducts performed acceptably

under some thorough exercising by the professor-users, with

only one abort due to a TOPS-10 system-level control option.

The majority of the problems moted by the users were defi-
ciencies -in the product’s man-machine interface: unnecessary
restrictions, confusing options, missing items, and unexplained
actions. Some of these would have been easy to fix, but others
would have required considerable effort to fix, such as the

lock-step process through the input options and the slow per-

formance of the disk-oriented data storage/ retrreval routines in
Team F’s product.

Each user noted about 30 problems with the product he was
exercising in his 2 h session. Table Il summarizes the most

significant problems with each product, with the most critical -

“This shows that results on the refative efficacy of error-detection
techniques are highly dependent on the sample of programs used to

- obtain the results, implying a need for considerable care in evaluating .
‘the representativeness of such results to one’s own software context.

- N ,) - P

5

]

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0 _ : Lt

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0

~ BOEHM: SMALL-SCALE APPLICAT[O!\.FTWARE ENGINEERING

_ TABLE I

ACCEPTANCE\TEST RESULTS

" PROBLEM .

RESTRICTIONS

e VERBOSE PROMPTS

e e & o o

- TEAMP TEAM F
CATEGORY
© UPPER-CASE ONLY ON COMMANDS UPPER-CASE ONLY ON COMMANDS
UNNECESSARY | @ LOCK-STEP PROGRESS THRU OPTIONS LOCK-STEP PROGRESS THRU OPTIONS

VERBOSE HELP MESSAGES
VERY SLOW PERFORMANCE
OVERLY REDUNDANT DATA ENTRY

© TOP-LEVEL “HELP" REQUESTS

INCONSISTENT RATING DEFINITIONS

USE OF UNEXPLAINED SYNONYMS
(TABLES, PARAMETERS, COST-DRIVERS)

" CONFUSING © BLANK ACCEPTED AS VALID NAME -
OPTIONS o AMBIGUOUS TERMINATION OPTION
© POOR QUTPUT FORMATTING

® CONFIRMATION OF DELETIONS - ® UM-USER ID DEFINITION

e USER MANUAL (UM} INDEX ‘e MISSING "HELP" OPTIONS
MISSING e UM-CARRIAGE RETURN CONVENTIONS & UM-REAL/INTEGER CONVENTIONS -
ITEMS o UM-EXPLAIN FILE USAGE © NO CHECK FOR MISSING INPUTS

« MISSING “HELP” OPTION ‘ o ’

UNEXPLAINED

[

ASSIGNMENT OF DEFAULT NAMES -

NO “EXECUTION IN PROGRESS“

ACTIONS © TRUNCATION OF ID'S MESSAGE ,
¢ RANGE CHECKING ON MODULE SIZING | ® RANGE-CHECKING ON MODULE SIZING -
© UM-GIVEN RUN COMMAND WON'T WORK | & CONTROL-Z BLOW SYSTEM

ERRORS "HELP” NOT TREATED AS COMMAND o ASSUMES RESPONSE IS “NO"

487

IN SOME MODES

ABORT IF TRY FILE iN WRONG FORMAT

IF NOT * YES

NO WAY TO MODIFY MODULE SIZING -

problems underlined. “UM” in Table Il stands for “Users’
Manual,” a source of several acceptance-test problems.
. s . . R

Maintenance

Each team was then giveﬁ a “change order” to extend some
of the cost calculations and provide some “additional output
cost estimate information and reports. The changes were per-
formed by the nonprogramming members of the development
team (V+V and P+ C members), and were -successfully
" completed on schedule. The extensive documentation and
commentary along with the structured code were considered
Véry helpful by the maintainers, although the incomplete con-
fi guratlon management caused some problems in using up—
dated master versions of the various subsystems.

" There was no significant difference in maintainability between
the Fortran and Pascal versions. Both were well-structured;

. the Pascal version was better formatted whlle the Fortran

versxon had better commentary

V. TeST oF HYPOTHESES

" Hypothesis 1: Large-project software engineering procedures
can be cost-effectively tailored to small projects.

The on-time, essentially successful completion and mainte-
nance of both products with respect to an ambitious schedule
and difficult host computer environment tends to confirm the
hypothesis with respect to the effectiveness of the techniques.

However, the incomplete employment of the unit develop-
ment folder, configuration management, structured walk-
through, and independent V +V techniques, largely due to
time pressures, might lead one to conclude that these were

considered not cost-effective by the two teams. Also, the-large

Approved For Release 2007/07/17 - CIA-RDP86B00689R000300140021-0

amount of time and effort devoted to producing requirements.’
and design specifications might not have been cost-effectlve
for a small product.”

" These conclusions were not substantiated by the project
critiques produced by the participants. Table III presents an

‘ordered list of the major improvement items listed in the cri-

tiques, in terms of the number of participants who included -
the item as a significant area for improvement in the project.
The highest- rankmg item was “more time for testing,” gener-

'ally with a comment that the independent testing activity

should have had time to be fully exercised. However, the p
part1c1pants did not feel that too much effort had been put .
into the spemﬁca’uon activities, as the ‘next-ranking itern was
“more thorough specifications.” The increased test time was
rather suggested to come from “doing more work earlier”

" (item 6, cited by S participants) or “lengthening the.de\\'el-'
~opment schedule” (item 14, cited by 3 participants). Only 2

participants felt that there was too much documentatlon
involved (item 20). <

Further, the other techniques whose use was reduced due to
time pressures were considered by the part:c1pants as items
which should have been unproved Near the top of the list
were “full use of walkthroughs™ (item 3, cited by 7 partici-
pants) and “full use of configuration management” (item 4,
cited by -6 participants). The need for full use of unit devel-
opment folders (item 11, cited by 3 participants) drew less of
a consensus. This isprobably due to two main reasons.

1) Their value in enhancing visibility is less on a small project.

2) Due to their novelty, they were not used to full advantage '
on the project.”

One software engmeermg techmque whlch genexal]y works

’

“effectively tailored to small projects.

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL SE-7, NO s, SEPTEMBER 1981

_ TABLE III o F
IMPROVEMENT 1TEMS MENTIONED IN. PROJECT CRITIQUES

IMPROVEMENT ITEM

TEAM P
(5 MEMBERS)

TEAMF

TOTAL
(6 MEMBERS)

MORE TIME FOR TESTING
MORE THOROUGH SPECIFICATIONS
FULL USE OF WALKTHROUGHS

FULL USE OF CONFIGURATION MANAGEMENT

E-
-3

PDP-10 RELIABILITY, AVAILABILITY -
DO MORE WORK EARLIER

BETTER SPEC. OF USER INTERFACE

MORE DELEGATION, COORDINATION BY MANAGERS

OO N O oS ON

NEED FOR CLERICAL SUPPORT

- e
-0

. FULL USE OF UDF'S’
STRENGTHEN MANAGER'S AUTHORITY
STRENGTHEN P+C, V+V ROLES
LENGTHEN DEVELOPMENT SCHEDULE
IMPROVE TEAM COMMUNICATlONS _

. IMPROVE TEAM-F DATA-ACCESS DESIGN

<
- e -
O wN

-
[<2]

CONPUTER SUPPORT OF LlBRARY FUNCTIONS

-
~

. EQUALIZE ASSIGNMENTS
CLEAN UP PASCAL COMPILER PROBLEMS

-
© ®

REDUCE REQUIRED DOCUMENTATION

N
=4

MORE USER INTERACTION DURING PROJECT

N
-

3 MANY OTHER SlNGLE COMMENTS

N
N

. STRUCTURED CONTROL FEATURES IN LANGUAGE

cloanmnmlo=arm v LWL = wwow|lwwss
a2 0 0{WN = o woofenNnNN ©Ws R

—uunnuuu‘uuuu‘wubmmmmuuw

better on small projects than on large projects experienced
some difficulties here. This was the chief piogram_mer tech-
nique. Five participants, including both project manager/chief
programmers, ‘felt that the extensive specification and pro-
gramming activities required of the chief programmer function
detracted from the management coordination and communica-
tion activities needed in the project manager function, and
that more of the leader’s work should have been delegated.
Both project leaders put in more time than anyone else on
the team, averaging 17 h/week as compared to 10 h/week for
the other team members. This sort of overload is generally the
problem in applying the chief programmer technique on large
projects, on which the team leaders have a heavy additional
workload of interteam coordination as well [16].

"On balance, the evidence tends to confirm Hypothesis 1:
large-project software engineering techniques can be cost-
The main difficulty
standing in the way of fully utilizing the techniques was the
arbitrary schedule imposed by the USC semester. This pre-
cluded the teams from following the important axiom.

If there is a choice between “do it right” and “do it on

schedule,” by all means choose the former.

Hypothesis 2: The choice of programming Ianguage is. the
dominant factor in small software product development.

In all of the participants’ critiques, the choice of program-
ming language was mentioned only once (item 21 in Table III).
The input-output subsystem programmer indicated that about
40-50 percent of the user input and error-checking logic con-
sisted of Fortran GoTo’s which could have been eliminated in
a language containing CASE, IFTHENELSE, and BEGIN-END
constructs, with an accompanying increase in code clarity.

by participant comments on other software engineering and

management items, and since the results of the acceptance test
and maintenance activity were not strongly influenced by g

language features, it is evident that this experiment does not
confirm Hypothesis 2. Rather, it is evident that many factors
were more critical to project success than was the choice of
programming language. -

Hypothesis 3: Programming is the dominant activity in smaII‘

software product development.

Fig. 1 shows the distribution of project efforts by activity
for the two projects, based on the weekly timesheets filled out
by the participants. The distributions for the two projects are
strikingly similar. They indicate that programming consumes
more of the total effort on small projects than on large projects

(here, 17 percent and 12 percent versus 7-10 percent on large -

projects). - But the programming effort is far from dominant.
The largest effort by a good margin on both projects (32 per-
cent and 28 percent) was devoted to documentation. One
might consider that this might reflect an excessive level of
documentation requxrements were it not that the participants’
critiques summarized in Table III strongty favored more rather

than less documentation (1tems 2 and 20).

Thus, it is evident that this experiment does not confirm
Hypothesis 3. A number of other project activities require a
comparable or greater amount of effort on a small prolect to
that required for programmmg

Hypothesis 4: The “deadline effect” holds on software proj-
ects and can be used to help manage software development.

Both projects had three major external deadlfmes; the plans

5The amounts shown for “fixing™ are addmonal to the 100 percent

Since this comment was strongly dommated in the critiques * accounted for by the other activities.

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0

B e

Smongiiciiy

(g 8300 S

JRVO

" Approved For Release 2007/07/17 CIA RDP86BOO689R000300140021 0

BOEHM SMALL-SCALE APPLICATION S(.VARE ENGINEERING

[veame
% QTEAMF

Y

PERCENT
Of
TOTAL
" EFFORT

®

<

777 777777
2 ANAANAANRNRNRNARRNRRNY

READ DESIGN PLAN

PROGRAWM pbev. TEST

REVIEW MEET FIX
_ (ADD'L)
PROJECT ACTIVITY :

Fig. 1. Distribution of project effort by achvxty

180+ |

150~

e

120
PROJECT
EFFORT
MANHOURS
WEEK

§o..-

TOTAL
" EFFORT

“EIXING™
4 EFFORT

PRR

7 .8 9 - 10 "
POR : - ACCEPT,

WEEKS FROM PROJECT STARTUP .. TEST
Fig. 2. Distributiop of project effort by week '

and requiréments review (PRR) at the end of Week 3, the
product design review (PDR) at the end of Week 6, and the -
acceptance test at the end of Week 11. Fig. 2 shows the dis-
tribution of both project’s effort by week, with the major
deadlines indicated. It is clear that the “deadline effect” held
for both projects, as the level of effort on both projects in-
creases sharply in the weeks ended by the three major dead-
lines: Weeks 3,6, and 11.

Thus, the mtezmedlate deadlines of the PRR and PDR were
used to help manage the project, by focusing more effort on -
early requirements and design problem identification and cor-
rection, This represents a significant savings in effort, since
several organizations’ experience on large projects has shown
that these problems are much more expensive to correct (by

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0

factors of 10 to 100) in later phases [17]. On these projects,
the cost-to-fix-increase between the requirements phase and
the acceptance test phase was about 4:1 (see [1, p. 40]).

Fig. 2 also shows the number of hours per week devoted to"
fixing project plans specifications, and code. Here again, the.
distributions for the two projects are roughly similar, with
peaks in the weeks after PRR and PDR and in the final week
of testing. Some differences are evident, due largely to the
extra amount of fixing required by Team F to make up for the
deficiences in its initial requirements spec. For completeness,
the distribution of weekly effort by prolect actmty is shown
in Fig. 3 (for Team P).

Thus, evidence from this experiment tends to confirm Hy-
pothesis 4 on the existence and utility of the “_deadlme effect.”

490

Approved For Release 2007/07/17 -

w @
100
.
80—
PROJECT
EFFORT oo
MANHOURS _
WEEK |
40 —i
20 —

. DOCUMENT

CIA-RDP86B00689R000300140021-0 3, SEPTEMBER 1981

[
PDR .
WEEKS FROM PROJECT STARTUP

ACCEPT.
TEST

Flg 3 Dlstnbutlon of project effort by week and activity (team P)

On the other hand, the projects’ effort curves clearly do not
follow the Rayleigh distribution (Fig. 4) found to hold on
some large prolects [41, due to the multiple peaks caused by
the deadlines. .

Hypothesis 5: Most of the code in a software product is
devoted to “housekeepzng

Fig. 5 shows the dxstrxbutxon of source code by function
for the two projects.® Again, the distributions are markedly
~ similar. The most striking' observation is that the amount of

code required to implement the actual cost model is only

2 percent for Team F and 3 percent for Team P. Far larger
percentages are devoted to such “housekeeping” functions as
error processing, mode management (control), user amenties,
and moving data around. :

The magnitude of this effect was a considerable surprise to
me. For one thing, it showed how badly I had erred in distrib-
uting work assignments to the file, 1/O, and model program-
mers. On both projects, the I/O subsystem programmer had
about 50 percent of the lines of code to develop, while the
model programmer had only about 10 percent (the other
40 percent were split in different ways on the two projects
between the executive and file subsystems). This was one of
the main reasons for the “equalize assignments” comments in
the project critiques (Item 17 in Table III). Fig. 5 thus pro-
vides a useful start toward a general approach to project sizing,
in giving an idea of the approximate percentages of a software
product of this nature (a small, interactive computational
model) which are devoted to certain classes of functions.
Whether the distribution of source code by function is similar
for other types of products is a useful subject for further
mvestlgatlon : -

6The amounts shown for “comments” are addmonal to the 100 per-
cent accounted for by the other functions.

A

EEFORT

TIME
Fig. 4.. A typical Rayleigh distribution.

Insights into “Software Piece-Part” Technology
Another useful subject for further investigation is the possi-

bility of using the prograzn function categories.as a basis upon

which to form libraries. of standard program components or
piece-parts. In analyzimg and categorizing the source code of

_the two products, it appeared that much of the line-by-line

code involved in obtainimg user inputs, help message processing,
report generation, and error processing could have been per-
formed by a small number of standard parameterized proce-
dures, and that much of the mode management (control)
could have been handled by defining a hierarchy of modes and
using decision tables to-define mode transitions. The resulting
code would have been considerably less efficient, but in an era
of computational plenty and software personnel shortages, the
reduction in lines of code to be programmed and tested would
appear to make the effort worthwhile.

On the other hand, this sort of analysis is also useful in deter-
mining rough bounds om the potential ‘payoff of a software
piece-part technology. Im analyzing the code involved in per-
forming model calculations, moving data around, and defining
data and formats, it appeared to be much more difficult to
define standard program: components. which could lead to any

" significant reduction in the lines of code required to perform

the function;. Since these latter functions accounted for

S e 4 e £ e A R i3 e

s e v

i

Approved For Release 2007/07/17 CIA RDP86800689R000300140021 0 e ——

g s

PR S

O RS © B S A AN

AT

Approved For Release 2007/07/17 CIA RDP86800689R000300140021 0

|

.BBEHM: SMALL-SCALE APPLICATION‘TWARE ENGINEERING

491

OISTRIBUTION OF SOURCE CODE BY FUN(}I‘IOIV

SUMMARY OF TWO PRODUCTS DEVELOPED TO SAME BASIC SPECIFICATION
{SMALL, INTERACTIVE SOFTWARE COST MODEL)

_ 40

PROJECT P
ol LA rrosect F

10

% OF SOURCE LINES OF GODE
3
T

"l
AN
%

W
<
RN

N
N
N
° 7
MODEL USER USER ONTROL

CALC INPUTS OUWUTS

HELP
MSG
PROC

ERAROR MOVING DATA COMMENTS
PROC DATA DECL.,
AROUND FORMATS

Fig. 5. What does a software product do?

about 50 percent of the total lines of code, it implies that the
potential reduction in lines of code required to implement
products of this nature is more like 50 percent than the 90
percent that one might hope for from software piece-part
technology. Still a 50 percent potential reduction would be
highly significant, indicating that further and more detailed
investigations into the feasibility of software piece-part tech-
nology would be highly worthwhile. -

Hypothesis 6: The COCOMQO model provides an accurate
estimate of the man-hours required for small software product

development.

As afinal test of their mamtenance modifications, both teams
entered a description of their own “interactive COCOMO”
products into their version of the COCOMO model, to see how
well the model would predict the magnitude of their efforts.
The results are shown in Table IV,

At first glance, it would appear that the hypothes1s was not
confirmed: that the actual effort is only about 70 percent
of that estimated by the COCOMO model. However, there
may be a suitable explanation for this discrepancy. This is
that the man-hours reported by the participants covered only
activities directly related to the project. As seen in the sum-
mary of Bardain’s study [10] in Fig. 6, these direct-project
activities typically cover only about 70 percent of the total
hours a programmer spends on thg job. The other 30 percent
of the time is consumed by “overhead” activities such as train-
ing, personal business, and nonproject communication.” Based
on this rationale, one might be willing to say that Hypothesis 6
was provisionally confirmed, but it would be safer to say that
the test was inconclusive. ‘

A number of related statistics on the two projects are sum-

TForgetting to account for this “overhead” factor is one of the four
main reasons why people frequently underestimate software costs. ~
The other three are underestimating the amount of code that will be
required for “housekeeping” functions (Fig. 5); underestimating the
amount of project effort devoted to project-oriented reading, planning,
documenting, reviewing, meeting, and fixing (Fig. 1), and simply under-
estimating the number of application functions which the software
product will actually require. :

Approved For Release 2007/07/17 : CIA-RDP86800689R000300140021-0

TABLE IV
COCOMO PREDICT]QNS VERSUS ACTUAL EFFORT

Man-Months Actual
Team Actual Predicted Predicted .
Team P 41 58 . 0.71
Team F 5.1 7.0 0.73

marized in Table V. In general, there is a marked similarity
between the sizes of the products and rates of production
on the two products. Some other comparisons with related
studies are as follows.

e The ratio of delivered source mstructlons to pdges of docu-
mentation (DSI/page) of 15.5 is somewhat lower than the
20.4 DSI/page) reported by Felix and Walston [3] and con-
siderably lower than the 25-48 DSI/page reported by Freburger
and Basili [17]. Part of the difference is'probably due to the
larger sizes of their software products; part of it is due to dif-
ferences in defining “documentation” [18].

e The number of documentation man-hours per page of -
documentation was 1.6, which works out to a cost of $40/page
at a typical burdened rate of $25/man-hour. This is at the low
end of the range of $35-150/page reported at an Air Force
workshop [19]. Again, however, this $40 ﬁgure is not adjusted
to include “overhead” time.

VI. CONCLUSIONS

The main conclusions are presented in terms of the hypothe- .
ses tested in the experiment.

Hypothesis 1: Large-project software engineering procedures
can be cost-effectively tailored to small projects..

Result: Confirmed by this experiment, although some of
the confirmation is based on participants indicating that they
should have used some techniques more (independent test,
walkthroughs, configuration management, unit development
folders), rather than that they had fully used them and found
them successful.

&

492

WRITE
PROGRAMS
13

Jos
COMMUNICATION
32

READ
PROGRAMS, MANUALS
16

PEASONAL
13

MISC
{WALKING,

OFFSITE, ..)
15

Fig. 6. What do programmers do? (Bell Labs time and motion study.)

TABLE V)
COMPARATIVE PROJECT STATISTICS
ITEM TEAM P TEAM F
INITIAL REQUIREMENTS SPEC. — PAGES 24 18
PROBLEM REPORTS (PR'S/PAGE) 41 (1.7) 31(1.7)
INITIAL LIFE CYCLE PLAN — PAGES i 20 14
INITIAL RQTS./DESIGN SPEC. — PAGES 68 58
PROBLEM REPORTS (PR'S/PAGEY 48 {0.7) 7101.2)
INITIAL USER'S MANUAL — PAGES 9 6
FINAL LIFE CYCLE PLAN — PAGES 19 14
FINAL RQTS./DESIGN SPEC. —~ PAGES 73 79
FINAL USER’S MANUAL — PAGES 28 20
FINAL TEST PLAN — PAGES 1 . 6
FINAL TEST REPOR1 — PAGES . 7 8
TOTAL FINAL DOCUMENTATION — PAGES 138 127
DOC'N. MANHOURS (MANHOURS/PAGE) 202 (1.5} 21311.7)
DELIVERED SOURCE INSTR. (DSI/PAGE) 2137 (15:5) 1977 (15.6)
TOTAL REPORTED MANMONTHS {DS!/MM) 4.1 (524) 5.1 (390}

Hypothesis 2: The choice of programming language is the
dominant factor in small software product development.

Result: Not confirmed by this experiment. Many other
software engineering and management factors were more
critical to project success than was the choice of programming
language.

Hypothesis 3: Programming is the dominant activity in small
software product development. 4

Result: Not confirmed by this experiment. For the two
teams, programming activities consumed 12 percent and 17
percent of the total development manhours, while documenta-
tion activities consumed 28 percent and 32 percent, and several
other activities consumed about the same percentage of time
as did programming.

Hypothesis 4: The “deadline effect’ holds on small software
projects and can be used to help manage software development,

Result: Confirmed by this experiment. Early deadlines
stimulated efforts to validate requirements and design specs
early, resulting in net project savings.)

Hypothesis 5: Most of the code in a small application soft-
ware product is devoted to “housekeeping.”

Result: Confirmed by this experiment. For the two teams,

the amount of code required to implement the actual cost’

Approved For Release 2007/07/17

not include the

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0 £prempER 1081

model was only 2 perc’,and 3 percent of the total code de-
veloped. Far larger percentages were devoted to such “‘house-
keeping” functions as error processing, mode management
user amenities, and moving data around.

Hypothesis 6: The COCOMO model provides an accurate
estimate of the man-hours required for small sofrware product
development,

Result: Inconclusive. The data collected on the project did
“overhead” man-hours usually charged to
projects. If adjustment is made for this overhead factor, there .
is a good agreement between the COCOMO estimates and the
project results.

In addition, a number of ﬁgures and tables have been pre-
sented in the paper which provide some quantitative reference
points for the distribution of effort, documentation, code,

- and problems.during the phases of small application software

development.

Some Qualifying Remarks

Choice of Programming Language: The results of this ex-
periment do not imply that programming language issues are
not important. The experimental results understate the im-
portance of language issues in three main ways.

e The interactive cost model application involved largely
simple programming constructs. Although most programs are
just as straightforward, there are many more complex programs
which are strongly benefited by modern language capabilities.

e The experiment involved a single stand-alone program. An
organization with many programs to develop (and support)
will find the choice of programming language a much more
significant issue.

e There were no major apphcatlons-versus‘lancruaﬂe mis-
matches, as can occur in developing scientific programs in
Cobol, for example.

The main result is thus not to downplay the importance of
programming languages, but to emphasize that other factors
are at least as critical to successful software engineering.

Productivity and Team Size: It is tempting to look at the .
comparative productivity of Team P (524 DSI/MM) and Team
F (390 DSI/MM) in Table V, and ascribe the différence to the
choice of programming language. However, the detailed activ-
ity statistics (and subjective impressions) on the projects indi-
cate that the effect was due more to the additional person on
Team F, since Team F’s added man-hours were largely spent
in group learning and coordmahon activities: reading, review-
ing, and meeting. '

Activity = Man-Hours TeamP Team F
Design, Plan, Program, Document, Test 467 477
Read, Review, Meet 144 294

The amount of time spent by both teams in direct product
generation and test activities was about the same.

The amount of time spent on reading, reviewing, and meet-
ing activities for both teams was a good deal higher than it
would be for developing the same product in industry, for the

. following main reasons:

CIA RDP86B00689R000300140021-0

PN

AR+ e £

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0

.
s BOEHM: SMALL-SCALE APPLICATION S(.IARE ENGINEERING

« for teaching purposes, the teams were larger than necesséry,

o the students had no experience in working with each other,
and little previous experience in working with groups.

“Deadline Effect”: This effect was no doubt magnified by
the student environment, which does not have the stabilizing
factor of a 40 hour work week. However, it is impressive that
the deadline effect held for the students even in the face of
other patterns of demand on student time: deadlines in other
courses, big-game weekends, qualifying exams, etc.

Preconditioning: The procedures established for the proj-
ects committed both teams to a number of activities (e.g.,
early reviews, baseline configuration management) and docu-
mentation requirements (e.g., life-cycle plans, requirements
specifications, test plan) which are frequently not encountered
on small projects. To some extent, these procedures precondi-
tioned the projects to spend more time on nonprogramming
activities than the typical small application software project.
Although the participants’ feedback indicated that these
procedures were key to the projects’ sucdess, it is important to
. note that the confirmation of Hypothesis 1 and the nonconfir-
mation of Hypotheses 2 and 3 are somewhat preconditioned
by the projects’ procedures. It would be highly valuable to
attempt an independent replication of the experimental re-
sults, under the condition that one of the teams develop their
product without using the procedures established here.

ACKNOWLEDGMENT

I would like to acknowledge the enthusiasm, talent, and
dedication of the part1c1pants in this experiment: project
managers P. Jansma and L. Duclos, and team members
E. Babcock, K. Beck, T. Everman, J. Han, N. Law, J. Painter,
S. Peng, S. Tan, and B. Wu. I would also like to thank USC
Computer Science Professors L. Cooprider and J. Guttag for
their thorough acceptance tests of the products, and Prof.
E. Horowitz, USC Computer Science Department Head, for
his encouragement and support in a number of technical and
administrative dimensions.

\ e REFERENCES
- [11 B. W. Boehm, Software Engineering Economics.
Cliffs, NJ: Prentice-Hall, 1981. ")
[2] R. Nelson, Software Data Collection and Analysis at RADC.
Rome, NY: Rome Air Develop. Center, 1977.
[3]1 C. P. Felix and' C. E. Walston, “A method of programming
measurement and estimation,” IBAM Syst. J., vol. 16, no. 1, 1977.
[4] L. H. Putnam, “A general empirical solunon to the macro soft-
ware sizing and estimating problem,” JEEE Trans. Software Eng.,
July 1978

Englewood

-

493

[5] B. W. Boehm and R. W. Wolverton, “Software cost modeling:

Some lessons learned,” in Proc. U.S. Army/[IEEE Second Life

Cycle Management Workshop, Aug. 1978.

W. A. Hosier, “Pitfalls and safeguards in real-time digital systems

‘with cmphésm on programming,” IRE Trans. Eng. Management,
pp. 99-118, June 1961.

J. R, Brown “The impact of modem programming practices on’

software development,” RADC-TR-77-121, June 1977.

R. W. Wolverton, “The cost of developing large-scale software,”

IEEE Trans. Comput., pp. 615-636, June 1974.

F. P. Brooks, The Mythical Man-Month. Reading, MA: Addison-

Wesley, 1975. _

E. F. Bardain, “Research studies of programmers and program-

ming,” 1964; cited in D. B. Mayer and A. W. Stalnaker, “Selec-

tion and evaluation of computer personnel,” in Proc. ACM68,
1968, pp. 657-670.

F. S. Ingrassia, “Combating the ‘90% complete’ syndrome,”

Datamation, pp. 171-176, Jan. 1978.

T. E. Bell and T. A. Thayer, “Software requirements: Are they

really a problem?,” in Proc. 2nd Int. Conf. Software Eng., IEEE

Comput. Soc., Oct. 1976, pp. 61-68.

G. J. Myers, “A controlled experiment in program testing and

code walkthroughs/inspections,” Commun. Ass. Comput. Mach.,

pp. 760-768, Sept. 1978. -

P. Naur, “Programming by action clusters,” BJ/T, vol. 9, no. 3,

pp. 250-258, 1969.

J. B. Goodenough and S.-L. Gerhart, “Toward a theory of test

data selection,” IEEE Trans. Software Eng., pp. 156-173, June
1975.

T. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability.

North-Holland, 1978.

B. W. Boehm, “Software engineering,” IFEE Trans. Comput.,

pp. 1226-1241, Dec. 1976.

K. Freburger and V. R. Basili, *“The software engineering labora-

tory: Relationship equations,” Univ. Maryland Tech. Rep. TR-

764, May 1979,

Proceedings, Government/[Industry Software Sizing and Costing
Workshop, U.S. Air Force Electron. Syst. Div., Bedford, MA,

Oct. 1974. '

[6]

[7]
{8]
(91
[10]

(11]
[12]

(131

(14]
[15]

[16]
[17]
(18]

[19]

Barry W. Boehm received the B.A. degree in
mathematics from Harvard University, Cam-
bridge, MA, in 1957 and the M.A. and Ph.D,
degrees from the University of California, Los
Angeles, in 1961 and 1964, respectively.

From 1978-1979 he was a Visiting Professor
of Computer Science at the University of South-
ern California. He is currently a Visiting Profes-
sor at the University of California, Los Angeles,
and Director of Software Research and Tech-
nology in TRW’ Software Systems Division. -
He was previously Head of the Information Sciences Department at The
Rand Corporation, and Director of the 1971 Air Force CCIP-85 study.
His responsibilities at TRW include direction of TRW’s internal soft-
ware R&D program, of contract software technology-projects, of the
TRW software development policy and standards program, of the TRW
Software Cost Methodology Program, and of the TRW Software Pro-
ductivity Program. He has recently written a book, Sofrware Engineer-
ing Economics, being pubhshed by Prentice-Hall.

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300140021-0 s

